Sectoral and Regional Disaggregation and Interactions

Ian Sue Wing Boston University

Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis
Nov. 18-19, 2010

What Is an Integrated Assessment Model?

Desiderata in Model Development:

If neither empirical estimates nor computational resources were an issue, what kind of IAM would we construct?

Welfare: $\max \sum_{r} \sum_{t=\{0,...,T\}} \varphi_{r,t} \cdot \beta^t \cdot \mathcal{U}_r[C_{1,r,t}, C_{2,r,t},...]$

Sectoral Output: $Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K_{j,r,t}, E_{j,r,t}]$

Absorption: $Q_{j,r,t} = C_{j,r,t} + I_{j,r,t} + \mathcal{I}[X_t] \cdot E_{j,r,t}$

Energy Extraction: $X_{t+1} = \sum_{j} \sum_{r} E_{j,r,s} + X_{t}$

Capital Accum.: $K_{j,r,t+1} = \psi_{j,r} \cdot \sum_{j'} I_{j',r,t} + (1 - \delta) K_{j,r,t}$

Carbon Cycle: $G_{\rho,t+1} = \mathcal{H}_{\rho}[\sum_{j}\sum_{r}E_{j,r,t},G_{\rho,t}]$

Regional Climate: $M_{\mu,r,t} = \mathcal{M}_{\mu,r}[G_{1,t},G_{2,t},...]$

Regional Impacts: $Z_{i,j,r,t} = \Omega_{i,j,r}[M_{1,r,t}, M_{2,r,t},...]$

Regional Damage: $A_{j,r,t} = \Delta_{j,r}[Z_{1,j,r,t}, Z_{2,j,r,t},...]$

1. Economy

```
Welfare: \max \sum_{r} \sum_{t=\{0,...,T\}} \varphi_{r,t} \cdot \beta^{t} \cdot \mathcal{U}_{r}[C_{1,r,t}, C_{2,r,t},...]

Sectoral Output: Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K_{j,r,t}, E_{j,r,t}]

Absorption: Q_{j,r,t} = C_{j,r,t} + I_{j,r,t} + \mathcal{\Pi}[X_{t}] \cdot E_{j,r,t}

Energy Extraction: X_{t+1} = \sum_{j} \sum_{r} E_{j,r,s} + X_{t}

Capital Accum.: K_{i,r,t+1} = \psi_{i,r} \cdot \sum_{i'} I_{i',r,t} + (1 - \delta) K_{i,r,t}
```

Carbon Cycle:
$$G_{\rho,t+1} = \mathcal{H}_{\rho} \sum_{j} \sum_{r} E_{j,r,t}, G_{\rho,t}$$

Regional Climate: $M_{\mu,r,t} = \mathcal{M}_{\mu,r}[G_{1,t},G_{2,t},...]$

Regional Impacts: $Z_{i,i,r,t} = \Omega_{i,i,r}[M_{1,r,t}, M_{2,r,t},...]$

Regional Damage: $A_{j,r,t} = \Delta_{j,r}[Z_{1,j,r,t}, Z_{2,j,r,t},...]$

Welfare:
$$\max \sum_{r} \sum_{t=\{0,...,T\}} \phi_{r,t} \cdot \beta^t \cdot \mathcal{U}_r[C_{1,r,t}, C_{2,r,t},...]$$

Sectoral Output:
$$Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K_{j,r,t}, E_{j,r,t}]$$

Absorption:
$$Q_{j,r,t} = C_{j,r,t} + I_{j,r,t} + \mathcal{I}[X_t] \cdot E_{j,r,t}$$

Energy Extraction:
$$X_{t+1} = \sum_{j} \sum_{r} E_{j,r,s} + X_{t}$$

Capital Accum:
$$K_{j,r,t+1} = \psi_{j,r} \cdot \sum_{j'} I_{j',r,t} + (1 - \delta) K_{j,r,t}$$

Carbon Cycle:
$$G_{\rho,t+1} = \mathcal{H}_{\rho}[\sum_{j}\sum_{r}E_{j,r,t},G_{\rho,t}]$$

Regional Climate:
$$M_{\mu,r,t} = \mathcal{M}_{\mu,r}[G_{1,t},G_{2,t},...]$$
 Climate

Regional Impacts:
$$Z_{i,j,r,t} = \Omega_{i,j,r}[M_{1,r,t}, M_{2,r,t},...]$$

Regional Damage:
$$A_{j,r,t} = \Delta_{j,r}[Z_{1,j,r,t}, Z_{2,j,r,t},...]$$

Welfare:
$$\max \sum_{r} \sum_{t=\{0,...,T\}} \phi_{r,t} \cdot \beta^t \cdot \mathcal{U}_r[C_{1,r,t}, C_{2,r,t},...]$$

Sectoral Output:
$$Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K_{j,r,t}, E_{j,r,t}]$$

Absorption:
$$Q_{j,r,t} = C_{j,r,t} + I_{j,r,t} + \mathcal{I}[X_t] \cdot E_{j,r,t}$$

Energy Extraction:
$$X_{t+1} = \sum_{j} \sum_{r} E_{j,r,s} + X_{t}$$

Capital Accum.:
$$K_{j,r,t+1} = \psi_{j,r} \cdot \sum_{j'} I_{j',r,t} + (1 - \delta) K_{j,r,t}$$

Carbon Cycle:
$$G_{\rho,t+1} = \mathcal{H}_{\rho}[\sum_{j}\sum_{r}E_{j,r,t},G_{\rho,t}]$$

Regional Climate:
$$M_{\mu,r,t} = \mathcal{M}_{\mu,r}[G_{1,t},G_{2,t},...]$$

Regional Impacts:
$$Z_{i,j,r,t} = \Omega_{i,j,r}[M_{1,r,t},M_{2,r,t},...]$$

Regional Damage:
$$A_{j,r,t} = \Delta_{j,r}[Z_{1,j,r,t}, Z_{2,j,r,t},...]$$

3. Impacts

Welfare:
$$\max \sum_{r} \sum_{t=\{0,...,T\}} \varphi_{r,t} \cdot \beta^t \cdot \mathcal{U}_r[C_{1,r,t}, C_{2,r,t},...]$$

Sectoral Output:
$$Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K_{j,r,t}, E_{j,r,t}]$$

Absorption:
$$Q_{j,r,t} = C_{j,r,t} + I_{j,r,t} + \mathcal{I}[X_t] \cdot E_{j,r,t}$$

Energy Extraction:
$$X_{t+1} = \sum_{j} \sum_{r} E_{j,r,s} + X_{t}$$

Capital Accum.:
$$K_{j,r,t+1} = \psi_{j,r} \cdot \sum_{j'} I_{j',r,t} + (1 - \delta) K_{j,r,t}$$

Carbon Cycle:
$$G_{\rho,t+1} = \mathcal{H}_{\rho}[\sum_{j}\sum_{r}E_{j,r,t},G_{\rho,t}]$$

Regional Climate:
$$M_{\mu,r,t} = \mathcal{M}_{\mu,r}[G_{1,t},G_{2,t},...]$$

Regional Impacts:
$$Z_{i,j,r,t} = \Omega_{i,j,r}[M_{1,r,t}, M_{2,r,t},...]$$

Regional Damage:
$$A_{j,r,t} = \Delta_{j,r}[Z_{1,j,r,t}, Z_{2,j,r,t},...]$$

Maximand: Global Intertemporal Welfare Over a Policy Horizon

Production is Where We Model Climate Damages Exerting Their Effects

Disposition of Product Determines the Capacity Constraint of the Economy

Cumulative Carbon-Energy Extraction Drives Increase in Global Marginal Cost

Welfare $\sum_{r} \sum_{t=\{0,\ldots,T\}} \varphi_{r,t} \cdot \beta^{t} \cdot \mathcal{U}_{r}[C_{1,r,t},C_{2,r,t},\ldots]$ Cumulative $Q_{i,r,t} = A_{i,r,t} \cdot \mathcal{F}_{i,r}[K_{i,r,t}, E_{i,r,t}]$ $Q_{j,r,t} = C_{j,r,t} + I_{j,r,t} + \pi[X_t] \cdot E_{j,r,t}$ Absorption: Energy Extraction: $X_{t+1} = \sum_{i} \sum_{r} E_{i,r,t} + X_{t}$ $K_{j,r,t+1} = \sum_{i,r} \sum_{j'} I_{j',r} + (1 - \delta) K_{i,r,t}$ Capital Accum.: Carbon Cycle: Current Past history of energy use Regional Climate: Regional Impacts: $Z_{i,i,r,t} = \Omega_{i,i,r}[M_{1,r,t}, M_{2,r,t},...]$ Regional Damage: $A_{i,r,t} = \Delta_{i,r}[Z_{1,i,r,t}, Z_{2,i,r,t},...]$

(Endogenous) Accumulation of Capital is the Key Engine of Economic Growth

Welfare:
$$\max \sum_{r} \sum_{t=\{0,\dots,T\}} \varphi_{r,t} \cdot \beta^{t} \cdot \mathcal{U}_{r}[C_{1,r,t}, C_{2,r,t},\dots]$$
 Sectoral New regionand sectors and sectors specific capital $Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K, F]$ Depreciation factor specific capital $Q_{j,r,t} = C_{j,r,t} + I_{j,l,t}$ Depreciation factor $Q_{j,r,t} = C_{j,r,t} + I_{j,l,t}$ Capital Accum.:
$$K_{j,r,t+1} = \sum_{j} \sum_{r} E_{j,r,s} + X_{t}$$
 Carbon Cycle:
$$G_{\rho,t+1} = \mathcal{F}_{j,r} \cdot \sum_{j} I_{j,r,t} \cdot (1-\delta) K_{j,r,t}$$
 Carbon Cycle:
$$G_{\rho,t+1} = \mathcal{F}_{j,r} \cdot \sum_{j} I_{j,r,t} \cdot (1-\delta) K_{j,r,t}$$
 Extant regionand sectors enjoy fixed shares of aggregate investment (sectors enjoy fixed shares of aggregate investment) Regional Damage:
$$A_{j,r,t} = A_{j,r} \cdot \sum_{j} I_{j,r,t} \cdot A_{j,r,t}$$

Carbon Cycle Model (\mathcal{H}) Translates GHG Emissions into Reservoir Concentrations

 $\sum_{t=\{0,...,T\}} Global emissions$ from use of carbon-energy $C_{2,r,t}, C_{2,r,t}, \dots$ New GHG concentrations by reservoir ρ (e.g., atmosphere, mixed- $Q_{j,r,t} = C_{j,r,t} + I_{i} + \pi$ layer ocean, deep ocean) at global scale $X_{t+1} = \sum_{i} \sum_{r} E_{i,r,s}$ $K_{j,r,t+1} = \psi_{j,r} \cdot \sum_{j'} \sum_{j',r,t} + (1 - \delta) K_{j,r,t}$ Capital Accum $G_{\rho,t+1} = \mathcal{H}_{\rho}[\sum_{i}\sum_{r}E_{i,r,t},G_{\rho,t}]$ Carbon Cycle: Regional Climate: $M_{u.r.t} = \mathcal{M}_{u.r}[G_{1,t}, G_{2,t}]$ Regional Impacts: $Z_{i,i,r,t} = \Omega_{i,i,r}[M_{1,r,t}, N]$ **Extant GHG** concentrations Regional Damage: $A_{i,r,t} = \Delta_{i,r}[Z_{1,i,r,t}, Z_{2,i}]$ by reservoir

Climate Model (\mathcal{M}) Translates GHG Concentrations into Meteorology

Welfare: $\max \sum_{r} \sum_{t=\{0,\ldots,T\}} \phi_{r,t} \cdot \beta^t \cdot \mathcal{U}_r[C_{1,r,t}, C_{2,r,t},\ldots]$

Meteorological variables (e.g., temperature, precipitation, sea levels)

at regional scales

Carbon Cycle:

$$Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K_{j,r,t}, E_{j,r,t}]$$

$$Q_{j,r,t} = C_{j,r,t} + I_{j,r,t} + \mathcal{I}[X_t] \cdot E_{j,r,t}$$

Extant GHG

$$: X_{t+1} = \sum_{j} \sum_{r} E_{j,r,s} + X_{t}$$

$$K_{j,r,t+1} = \psi_{j,r} \cdot \sum_{j',r,t}$$
 concentrations by reservoir

$$G_{\rho,t+1} = \mathcal{H}_{\rho}[\sum_{j}\sum_{r}E_{j,r,t}]$$

Regional Climate:
$$M_{\mu,r,t} = \mathcal{M}_{\mu,r}[G_{1,t},G_{2,t},...]$$

Regional Impacts:
$$Z_{i,j,r,t} = \Omega_{i,j,r}[M_{1,r,t}, M_{2,r,t},...]$$

Regional Damage:
$$A_{j,r,t} = \Delta_{j,r}[Z_{1,j,r,t}, Z_{2,j,r,t},...]$$

Impacts Model (Ω) Translates Regional Meteorology into Physical Endpoints

Welfare:
$$\max \sum_{r} \sum_{t=\{0,...,T\}} \Phi_{r,t} \cdot \beta^{t} \cdot \mathcal{U}_{r}[C_{1,r,t}, C_{2,r,t}, \ldots]$$

Sectoral Output: $Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K_{j,r,t}, E_{j,r,t}]$
Absorption: $C_{j,r,t} + I_{j,r,t} + \mathcal{T}[X_{t}] \cdot E_{j,r,t}$
Energy Contemporaneous values of i physical impact endpoints by sector, region and time period $C_{j,r,t} + I_{j,r,t} + \mathcal{T}[X_{t}] \cdot E_{j,r,t}$
Regional Values of meteorological variables $\mathcal{F}_{j,r,t}$
Regional Climate: $\mathcal{F}_{j,r,t} = \mathcal{F}_{j,r,r}[K_{j,r,t}, K_{j,r,t}]$
Regional Impacts: $Z_{i,j,r,t} = \mathcal{D}_{i,j,r}[M_{1,r,t}, M_{2,r,t}, \ldots]$
Regional Damage: $A_{i,r,t} = \mathcal{D}_{i,r,t}[Z_{1,i,r,t}, Z_{2,i,r,t}, \ldots]$

Damage Model (Δ) Translates Physical Impact Endpoints into Productivity Shocks

Welfare:
$$\max \sum_{r} \sum_{t=\{0,...,T\}} \Phi_{r,t} \cdot \beta^t \cdot \mathcal{U}_r[C_{1,r,t}, C_{2,r,t}, \ldots]$$

Sectoral Output: $Q_{j,r,t} = A_{j,r,t} \cdot \mathcal{F}_{j,r}[K_{j,r,t}, E_{j,r,t}]$
Absorption: $Q_{j,r,t} = C_{j,r,t} + I_{j,r,t} + \mathcal{I}[X_t] \cdot E_{j,r,t}$
Energy Contemporaneous effect of climate damages on the productivity of individual sectors in each region Regional Impacts:
$$\mathcal{M}_{\mu,r}[X_t] = \mathcal{M}_{\mu,r}[X_t] \cdot \mathcal{M}_{\mu,r,t}$$
Regional Damage: $A_{j,r,t} = \mathcal{M}_{j,r}[X_t] \cdot \mathcal{M}_{\mu,r}[X_t]$
Regional Damage: $A_{j,r,t} = \mathcal{M}_{j,r}[X_t] \cdot \mathcal{M}_{\mu,r}[X_t]$

Key Points

- IAMs would be constructed so as to have sectoral as well as regional detail in production, consumption and climate damages
- Based on simulated climatic changes at the regional scale, we would <u>first</u> want to elaborate impacts by category of physical endpoint, sector, region and future time period
- Only then would we aggregate across endpoints to generate sector-by-region trajectories of shocks
- No aggregate damage function per se, so transparent causal chain from both ex ante shocks (A) and ex-post adjustments in regional/sectoral output and consumption (i.e., <u>reactive</u> adaptation) to ultimate welfare effects

Implications:

The Marginal External Cost of Carbon

 Climate impacts of an additional unit of carbon energy use at t = 0, cumulated over future periods:

Marginal utility of consumption of output of affected sector

potential output by region/sector

Marginal effects of impact endpoints on productivity of sectors in each region

$$\sum_{r}\sum_{t=\{0,\dots,T\}} \varphi_{r,t} \beta^t \sum_{j} \langle \partial \mathcal{U}_r / \partial C_{j,r,t} \times \mathcal{F}_{j,r,t} \times \sum_{i} \{ \partial \Delta_{j,r} / \partial Z_{i,j,r,t} \times \mathcal{F}_{i,r,t} \times \mathcal{F}_{i,r$$

$$\times \sum_{\mu} [\partial \Omega_{\text{i,j,r}} / \partial M_{\mu,\text{r,t}} \times \sum_{\rho} (\partial \mathcal{M}_{\mu,\text{t}} / \partial G_{\rho,\text{t}} \times \partial \mathcal{H}_{\rho} / \partial E_{0})] \} \rangle$$

Marginal effects of meteorological variables on physical impact endpoints, disaggregated by region/sector

Marginal effects of reservoir GHG concentrations on meteorology at regional scales

Marginal effect of emissions on the global carbon cycle

A Critical Review of the State of Current Practice

The Damage Function Approach (Nordhaus)

- Based on exogenous global-scale climate change projections, elaborate impacts (some denominated by category of physical endpoint, some by sector) by region for a benchmark global mean temperature change (2.5°C)
- Monetize, aggregate and express the resulting estimates as a proportion of future potential GDP
- Use assumptions about how proportion will scale with (a) income and (b) a simplified index of the magnitude of climate change (global mean temperature change, T) to specify aggregate damage function (\mathcal{D})
- Some baby steps toward the sector/impact category disaggregation of the canonical model: sea-level rise in RICE-2010

The Marginal External Cost of Carbon as Calculated in RICE

Difficult Problems, with Elusive Remedies

- Aggregation is inevitable, but on the modeling side, the key research need is to explicitly incorporate sectoral detail (j), impact categories (i) in IAMs
- Major obstacle: lack of empirical or detailed modeling studies; most of existing ones don't go past 2050 (cf. World Bank, 2010; Eboli et al., 2009)
- Targeting later decades for quasi-empirical assessment is critical, as 2050 likely to underestimate the onset of warming and climate damages late in the century
- But the further one goes out in time the less confidence one has in detailed estimates, leading to tradeoff between overall response magnitude and sectoral/regional specificity
- No easy way to cut this Gordian knot

CGE Models for Climate Impact Analysis

- Promising new direction, particularly given increasing climate model skill at regional scales
- An explicitly multi-regional/multi-sectoral approach: compute shocks based on exogenous information on physical endpoints by sector, impose consequent shocks on affected sectors within the various regions
- Key problems are CGE models' recursive-dynamic character (which precludes anticipation of impacts), limited time horizon (2050 in ICES)